

DIRECTORATE OF DISTANCE EDUCATION

UNIVERSITY OF NORTH BENGAL

MASTER OF SCIENCES- MATHEMATICS

SEMESTER -IV

NUMERICAL PROBLEM SOLVING BY

COMPUTER PROGRAMMING (THEORY)

DEMATH4SCORE2

BLOCK-1

UNIVERSITY OF NORTH BENGAL

PostalAddress:

The Registrar,

University of North Bengal,

Raja Rammohunpur,

P.O.-N.B.U.,Dist-Darjeeling,

West Bengal, Pin-734013,

India.

Phone: (O) +91 0353-2776331/2699008

Fax:(0353) 2776313, 2699001

Email: regnbu@sancharnet.in ; regnbu@nbu.ac.in

Wesbsite: www.nbu.ac.in

First Published in 2019

All rights reserved. No Part of this book may be reproduced or transmitted, in any form or by

any means, without permission in writing from University of North Bengal. Any person who

does any unauthorised act in relation to this book may be liable to criminal prosecution and

civil claims for damages. This book is meant for educational and learning purpose. The

authors of the book has/have taken all reasonable care to ensure that the contents of the book

do not violate any existing copyright or other intellectual property rights of any person in any

manner whatsoever. In the even the Authors has/ have been unable to track any source and if

any copyright has been inadvertently infringed, please notify the publisher in writing for

corrective action.

FOREWORD

The Self Learning Material (SLM) is written with the aim of providing

simple and organized study content to all the learners. The SLMs are

prepared on the framework of being mutually cohesive, internally

consistent and structured as per the university‘s syllabi. It is a humble

attempt to give glimpses of the various approaches and dimensions to the

topic of study and to kindle the learner‘s interest to the subject

We have tried to put together information from various sources into this

book that has been written in an engaging style with interesting and

relevant examples. It introduces you to the insights of subject concepts

and theories and presents them in a way that is easy to understand and

comprehend.

We always believe in continuous improvement and would periodically

update the content in the very interest of the learners. It may be added

that despite enormous efforts and coordination, there is every possibility

for some omission or inadequacy in few areas or topics, which would

definitely be rectified in future.

We hope you enjoy learning from this book and the experience truly

enrich your learning and help you to advance in your career and future

endeavours.

NUMERICAL PROBLEM SOLVING

BY COMPUTER PROGRAMMING

BLOCK-1

UNIT-1 Computer Programming .. 6

UNIT-2 Introduction To C Language ... 22

UNIT-3 Elements Of C -I .. 37

Unit-4 Elements Of C -II .. 58

UNIT-5 Expression And ‘If’ Statement In C 73

UNIT-6 Different Statement In C .. 90

UNIT-7 Designing Structured Programs In C 107

BLOCK-2

UNIT-8: Inter Function Communication And Recursive Function In C

UNIT-9: Arrays In C

UNIT-10: Pointers In C

UNIT-11: Dynamic Memory Allocation And Strings In C

UNIT-12: Structure In C And File Handling

UNIT-13: File Handling Function And Error Handling In C

UNIT- 14: Application Of C In Numerical Analysis

BLOCK-1 NUMERICAL PROBLEM

SOLVING BY COMPUTER

PROGRAMMING

Introduction to Block

C is a programming language developed at AT & T‘s Bell Laboratories

of USA in 1972. It was designed and written by a man named Dennis

Ritchie. In the late seventies C began to replace the more familiar

languages of that time like PL/I, ALGOL, etc ANSI C standard emerged

in the early 1980s, this book was split into two titles: The original was

still called Programming in C, and the title that covered ANSI C was

called Programming in ANSI C. This was done because it took several

years for the compiler vendors to release their ANSI C compilers and for

them to become ubiquitous.

Understand the different elements of C language like C Variable, C

Constant, Character Set, Tokens, Keywords and Identifiers .C

programming language provides built-in functions to perform input

operations to read any given input and to display data on screen when

there is a need to output the result. Understand the Expression and

Expression Types in C, Understand the concept of C Operator

Precedence and Associativity. Branching is deciding what actions to take

and looping is deciding how many times to take a certain action.

Structured programming is a programming technique in which a larger

program is divided into smaller subprograms to make it easy to

understand, easy to implement and makes the code reusable, etc.

Understand the Functions and types of Functions in C

6

UNIT-1 COMPUTER

PROGRAMMING

STRUCTURE

1.0 Objectives

1.1 Introduction

1.2 Overview of computer programming languages

1.3 Computing Environment

1.3.1 Types of Computing Environments

1.4 Types of Computer program language

1.5 Modular programming

1.6 Program development cycle

1.7 What is C programming?

1.7.1 Where is C used?

1.7.2 How C works?

1.8 Let us sum up

1.9 Keywords

1.10 Questions for Review

1.11 Suggested Reading and References

1.12 Answers to Check your Progress

1.0 OBJECTIVES

Understand the basics of Computer programming

Understand types of Computing Environment

Comprehend the Modular programming

Notes

7

Enumerate the Program development cycle

1.1 INTRODUCTION

Computer programming is the act of writing computer programs, which

are a sequence of instructions written using a Computer Programming

Language to perform a specified task by the computer.

Computer Programming is fun and easy to learn provided you adopt a

proper approach. This tutorial attempts to cover the basics of computer

programming using a simple and practical approach for the benefit of

novice learners.

1.2 OVERVIEW OF COMPUTER

PROGRAMMING LANGUAGES

There is a close analogy between learning English language and

learning C language. The classical method of learning English is to first

learn the alphabets used in the language, then learn to combine these

alphabets to form words, which in turn are combined to form sentences

and sentences are combined to form paragraphs. Learning C is similar

and easier. Instead of straight-away learning how to write programs, we

must first know what alphabets, numbers and special symbols are used

in C, then how using them constants, variables and keywords are

constructed, and finally how are these combined to form an instruction.

A group of instructions would be combined later on to form a program.

So a computer program is just a collection of the instructions necessary

to solve a specific problem. The basic operations of a computer system

form what is known as the computer‘s instruction set. And the approach

or method that is used to solve the problem is known as an algorithm.

Such instructions can be executed directly when they are in the

computer manufacturer-specific numerical form known as machine

language, after a simple substitution process when expressed in a

corresponding assembly language, or after translation from some

―higher-level‖ language. Although there are many computer languages,

relatively few are widely used.

Notes

8

Machine and assembly languages are ―low-level,‖ requiring a

programmer to manage explicitly all of a

computer‘s idiosyncratic features of data storage and operation. In

contrast, high-level languages shield a programmer from worrying about

such considerations and provide a notation that is more easily written and

read by programmers.

So for as programming language concern these are of two types.

1) Low level language

2) High level language

1.3 COMPUTING ENVIRONMENTS

What is Computing Environment?

When we want to solve a problem using a computer, the computer makes

use of various devices which work together to solve that problem. There

may be a various number of ways to solve a problem. We use the various

number of computer devices arranged in different ways to solve different

problems. The arrangement of computer devices to solve a problem is

said to be a computing environment. The formal definition of the

computing environment is as follows.

Computing Environment is a collection of computers which are used to

process and exchange information to solve various types of computing

problems.

1.3.1 Types of Computing Environments

The following are the various types of computing environments.

1. Personal Computing Environment

Notes

9

2. Time-Sharing Computing Environment

3. Client-Server Computing Environment

4. Distributed Computing Environment

5. Grid Computing Environment

6. Cluster Computing Environment

Personal Computing Environment

Personal computing is a stand-alone machine. In a personal computing

environment, the complete program resides on the stand-alone machine

and executed from the same machine. Laptops, mobile devices, printers,

scanners and the computer systems we use at home, office are the

examples for the personal computing environment.

Time-Sharing Computing Environment

The time-sharing computing environment is a stand-alone computer in

which a single user can perform multiple operations at a time by using a

multitasking operating system. Here the processor time is divided among

different tasks and this is called ―Time-sharing‖. For example, a user can

listen to music while writing something in a text editor. Windows 95 and

later versions of Windows OS, iOS and Linux operating systems are the

examples for this computing environment.

Notes

10

Client-Server Computing Environment

The client-server environment contains two machines (Client machine

and Server machine). These both machines will exchange the

information through an application. Here Client is a normal computer

like PC, Tablet, Mobile, etc., and Server is a powerful computer which

stores huge data and manages the huge amount of file and emails, etc., In

this environment, client requests for data and server provides data to the

client. In the client-server environment, the communication between

client and server is performed using HTTP (Hyper Text Transfer

Protocol).

Distributed Computing Environment

In the distributed computing environment, the complete functionality of

the software is not on a single computer but is distributed among

multiple computers. Here we use a method of computer processing in

which different programs of an application run simultaneously on two or

more computers. These computers communicate with each other over a

network to perform the complete task. In a distributed computing

environment, the data is distributed among different systems and that

data is logically related to each other.

Notes

11

Grid Computing Environment

Grid computing is a collection of computers from different locations. All

these computers work for a common problem. A grid can be described as

a distributed collection of a large number of computers working for a

single application.

Cluster Computing Environment

Cluster computing is a collection of interconnected computers. These

computers work together to solve a single problem. In a cluster

computing environment, a collection of systems work together as a

single system.

1.4 TYPES OF COMPUTER PROGRAM

LANGUAGE

Machine and assembly languages

A machine language consists of the numeric codes for the operations that

a particular computer can execute directly. The codes are strings of 0s

and 1s, or binary digits (―bits‖), which are frequently converted both

from and to hexadecimal (base 16) for human viewing and modification.

Machine language instructions typically use some bits to represent

operations, such as addition, and some to represent operands, or perhaps

the location of the next instruction. Machine language is difficult to read

and write, since it does not resemble conventional mathematical notation

or human language, and its codes vary from computer to computer.

Notes

12

Assembly language is one level above machine language. It uses

short mnemonic codes for instructions and allows the programmer to

introduce names for blocks of memory that hold data. One might thus

write ―add pay, total‖ instead of ―0110101100101000‖ for an instruction

that adds two numbers.

Assembly language is designed to be easily translated into machine

language. Although blocks of data may be referred to by name instead of

by their machine addresses, assembly language does not provide more

sophisticated means of organizing complex information. Like machine

language, assembly language requires detailed knowledge of

internal computer architecture. It is useful when such details are

important, as in programming a computer to interact with input/output

devices (printers, scanners, storage devices, and so forth)

Algorithmic languages

Algorithmic languages are designed to express mathematical or symbolic

computations. They can express algebraic operations in notation similar

to mathematics and allow the use of subprograms that package

commonly used operations for reuse. They were the first high-level

languages

Business-oriented languages

COBOL (common business oriented language) has been heavily used by

businesses since its inception in 1959. A committee of computer

manufacturers and users and U.S. government organizations established

CODASYL (Committee on Data Systems and Languages) to develop and

oversee the language standard in order to ensure its portability

across diverse systems.

COBOL uses an English-like notation—novel when introduced. Business

computations organize and manipulate large quantities of data, and

COBOL introduced the record data structure for such tasks. A record

clusters heterogeneous data such as a name, ID number, age, and address

into a single unit. This contrasts with scientific languages, in

which homogeneous arrays of numbers are common. Records are an

important example of ―chunking‖ data into a single object, and they

appear in nearly all modern languages.

https://www.merriam-webster.com/dictionary/heterogeneous

Notes

13

Visual Basic

Visual Basic was developed by Microsoft to extend the capabilities of

BASIC by adding objects and ―event-driven‖ programming: buttons,

menus, and other elements of graphical user interfaces (GUIs). Visual

Basic can also be used within other Microsoft software to program small

routines.

Declarative languages

Declarative languages, also called nonprocedural or very high level, are

programming languages in which (ideally) a program specifies what is to

be done rather than how to do it. In such languages there is less

difference between the specification of a program and its implementation

than in the procedural languages described so far. The two common

kinds of declarative languages are logic and functional languages.

Check your Progress-1

1. Define Computing Environment. State its Types

__

__

__

2. What is Declarative language?

__

__

__

1.5 MODULAR PROGRAMMING

Modular programming is the process of subdividing a computer program

into separate sub-programs.

A module is a separate software component. It can often be used in a

variety of applications and functions with other components of the

system. Similar functions are grouped in the same unit of programming

Notes

14

code and separate functions are developed as separate units of code so

that the code can be reused by other applications.

Object-oriented programming (OOP) is compatible with the modular

programming concept to a large extent. Modular programming enables

multiple programmers to divide up the work and debug pieces of the

program independently.

Modules in modular programming enforce logical boundaries between

components and improve maintainability. They are incorporated through

interfaces. They are designed in such a way as to minimize dependencies

between different modules. Teams can develop modules separately and

do not require knowledge of all modules in the system.

Each and every modular application has a version number associated

with it. This provides developers flexibility in module maintenance. If

any changes have to be applied to a module, only the affected

subroutines have to be changed. This makes the program easier to read

and understand.

Modular programming has a main module and many auxiliary modules.

The main module is compiled as an executable (EXE), which calls the

auxiliary module functions. Auxiliary modules exist as separate

executable files, which load when the main EXE runs. Each module has

a unique name assigned in the PROGRAM statement. Function names

across modules should be unique for easy access if functions used by the

main module must be exported.

Languages that support the module concept are IBM Assembler,

COBOL, RPG, FORTRAN, Morpho, Zonnon and Erlang, among others.

The benefits of using modular programming include:

 Less code has to be written.

 A single procedure can be developed for reuse, eliminating the need

to retype the code many times.

 Programs can be designed more easily because a small team deals

with only a small part of the entire code.

 Modular programming allows many programmers to collaborate on

the same application.

 The code is stored across multiple files.

Notes

15

 Code is short, simple and easy to understand.

 Errors can easily be identified, as they are localized to a subroutine or

function.

 The same code can be used in many applications.

 The scoping of variables can easily be controlled.

1.6 PROGRAM DEVELOPMENT CYCLE

The various stages in the development of a computer program are :

1. Problem Definition

2. Program Design

3. Coding

4. Debugging

5. Testing

6. Documentation

7. Maintenance

Problem Definition:

 The first step in the process of program development is the thorough

understanding and identification of the problem for which is the

program or software is to be developed.

 In this step the problem has to be defined formally.

Notes

16

 All the factors like Input/output, processing requirement, memory

requirements, error handling, interfacing with other programs have to

be taken into consideration in this stage.

Program Design:

 The next stage is the program design. The software developer

makes use of tools like algorithms and flowcharts to develop the

design of the program.

o Algorithm

o Flowchart

Coding:

 Once the design process is complete, the actual computer

program is written, i.e. the instructions are written in a computer

language.

 Coding is generally a very small part of the entire program

development process and also a less time consuming activity in

reality.

 In this process all the syntax errors i.e. errors related to spelling,

missing commas, undefined labels etc. are eliminated.

 For effective coding some of the guide lines which are applied are

:

o Use of meaningful names and labels of variables,

o Simple and clear expressions,

o Modularity with emphasis on making modules generalized,

o Making use of comments and indenting the code properly,

o Avoiding jumps in the program to transfer control.

Debugging:

 At this stage the errors in the programs are detected and

corrected.

 This stage of program development is an important process.

Debugging is also known as program validation.

 Some common errors which might occur in the programs include:

o Un initialization of variables.

o Reversing of order of operands.

o Confusion of numbers and characters.

Notes

17

o Inverting of conditions eg jumping on zero instead of on

not zero.

Testing:

 The program is tested on a number of suitable test cases.

 A test plan of the program has to be done at the stage of the

program design itself.

 This ensures a thorough understanding of the specifications.

 The most trivial and the most special cases should be identified

and tested.

 It is always useful to include the maximum and minimum values

of all variables as test data.

Documentation:

 Documentation is a very essential step in the program

development.

 Documentation help the users and the people who maintain the

software.

 This ensures that future modification if required can be done

easily. Also it is required during redesigning and maintenance.

Maintenance:

 Updating and correction of the program for changed conditions

and field experience is accounted for in maintenance.

 Maintenance becomes essential in following situations:

o Change in specification,

o Change in equipment,

o Errors which are found during the actual execution of the

program.

Computer Programming Languages are also made of several elements.

These basic elements include −

 Programming Environment

 Basic Syntax

 Data Types

 Variables

 Keywords

 Basic Operators

Notes

18

 Decision Making

 Loops

 Numbers

 Characters

 Arrays

 Strings

 Functions

 File I/O

1.7 WHAT IS C PROGRAMMING

C is a general-purpose programming language that is extremely popular,

simple and flexible. It is machine-independent, structured programming

language which is used extensively in various applications.

C was the basics language to write everything from operating systems

(Windows and many others) to complex programs like the Oracle

database, Git, Python interpreter and more.

It is said that 'C' is a god's programming language. One can say, C is a

base for the programming. If you know 'C,' you can easily grasp the

knowledge of the other programming languages that uses the concept of

'C'

It is essential to have a background in computer memory mechanisms

because it is an important aspect when dealing with the C programming

language.

1.7.1 Where is C used? Key Applications

1. 'C' language is widely used in embedded systems.

2. It is used for developing system applications.

3. It is widely used for developing desktop applications.

4. Most of the applications by Adobe are developed using 'C'

programming language.

5. It is used for developing browsers and their extensions. Google's

Chromium is built using 'C' programming language.

6. It is used to develop databases. MySQL is the most popular database

software which is built using 'C'.

Notes

19

7. It is used in developing an operating system. Operating systems such

as Apple's OS X, Microsoft's Windows, and Symbian are developed

using 'C' language. It is used for developing desktop as well as

mobile phone's operating system.

8. It is used for compiler production.

9. It is widely used in IOT applications.

1.7.2 How 'C' Works?

C is a compiled language. A compiler is a special tool that compiles the

program and converts it into the object file which is machine readable.

After the compilation process, the linker will combine different object

files and creates a single executable file to run the program. The

following diagram shows the execution of a 'C' program

Nowadays, various compilers are available online, and you can use any

of those compilers. The functionality will never differ and most of the

compilers will provide the features required to execute both 'C' and 'C++'

programs.

Following is the list of popular compilers available online:

 Clang compiler

 MinGW compiler (Minimalist GNU for Windows)

 Portable 'C' compiler

 Turbo C

Check your Progress-2

3. Explain Debugging in Program Development Cycle.

Notes

20

__

__

__

4. State key application of C.

__

__

__

1.7 LET US SUM UP

Computer languages allow computers to quickly and efficiently process

large and complex swaths of information. Computer programming helps

in developing programming languages which are used for transforming

computing problems into instructions. Programming languages have

helped in the development of the internet and mobile applications that

has changed life of humans greatly.

1.8 KEYWORDS

Operating system: the low-level software that supports a computer's

basic functions, such as scheduling tasks and controlling peripherals.

Embedded system: An embedded system is a combination of computer

hardware and software, either fixed in capability or programmable,

designed for a specific function or functions within a larger system

Compiler - is a special tool that compiles the program and converts it

into the object file which is machine readable.

1.9 QUESTIONS FOR REVIEW

1. What do you understand by Machine Assembly Language?

2. Enumerate Program Development Cycle

 3.Explain the working of C.

Notes

21

1.10 SUGGESTED READINGS AND

REFERENCES

1. B. Gottfried: Programming with C , Tata McGraw-Hill Edition 2002.

2. E. Balagurusamy : Programming in ANSI C, Tata Mcgraw Hill -

Edition 2002.

3. Brain W. Kernighan & Dennis M. Ritchie, The C Programme

Language, 2nd Edition (ANSI features) , Prentice Hall 1989.

4. Let Us C- Y.P. Kanetkar, BPB Publication - 2002.

5. Analysis of Numerical Methods—Isacsons& Keller.

6. Numerical solutions of Ord. Diff. Equations—M K Jain

7. Numerical solutions of Partial Diff. Equations—G D Smith.

8. Programming with C, B. Gottfried, Tata-McGraw Hill

9. Programming with C, K. R. Venugopal and Sudeep R. Prasad, Tata-

McGraw Hill

1.11 ANSWERS TO CHECK YOUR

PROGRESS

1. Provide definition- 1.3 and types – 1.3.1

2. Provide explanation --1.4

3. Provide explanation of debugging – 1.6

4. Provide applications – 1.7.1

22

UNIT-2 INTRODUCTION TO C

LANGUAGE

STRUCTURE

2.0 Objectives

2.1 Introduction

2.2 C Program Basics

 2.2.1 General rules for any C program

2.3 C Character Set

2.4 C Tokens

2.5 C keywords

 2.5.1 Properties of Keywords

2.6 C Identifiers

2.6.1 Rules for Creating Identifiers

2.6.2 Rules for Creating Identifiers for better programming

2.7 C data types

2.7.1 Primary data types (Basic data types OR Predefined data

types)

2.7.2 Derived data types (Secondary data types OR User-defined

data types)

2.7.3 Enumeration data types

2.7.4 Void data type

2.8 Let us sum up

2.9Keywords

2.10 Questions for Review

Notes

23

2.11 Suggested Reading and References

2.12 Answers to Check your Progress

2.0 OBJECTIVES

Understand the C Program Basics

Understand the elements of C - Character Set, Tokens, Keywords and

Identifiers Comprehend C data types

2.1 INTRODUCTION

C is a structured programming language. It is also known as function

orientated programming language. C programming language was

developed in the year of 1972 by Dennis Ritchie at Bell Laboratories in

the USA (AT & T).

In the year of 1968, research was started by Dennis Ritchie on

programming languages like BCPL, CPL. The main aim of his research

was to develop a new language to create an OS called UNIX. After four

years of research, a new programming language was created with

solutions for drawbacks in languages like BCPL & CPL. In the year of

1972, the new language was introduced with the name ―Traditional C‖.

2.2 C PROGRAM BASICS

C is a structured programming language. Every C program and its

statements must be in a particular structure. Every C program has the

following general structure...

Notes

24

Line 1: Comments - They are ignored by the compiler

This section is used to provide a small description of the program. The

comment lines are simply ignored by the compiler, that means they are

not executed. In C, there are two types of comments.

1. Single Line Comments: Single line comment begins with //

symbol. We can write any number of single line comments.

2. Multiple Lines Comments: Multiple lines comment begins with /*

symbol and ends with */. We can write any number of multiple

lines comments in a program.

In a C program, the comment lines are optional. Based on the

requirement, we write comments. All the comment lines in a C program

just provide the guidelines to understand the program and its code.

Line 2: Preprocessing Commands

Preprocessing commands are used to include header files and to define

constants. We use the #include statement to include the header file into

our program. We use a #define statement to define a constant. The

preprocessing statements are used according to the requirements. If we

don't need any header file, then no need to write #include statement. If

we don't need any constant, then no need to write a #define statement.

Line 3: Global Declaration

The global declaration is used to define the global variables, which are

common for all the functions after its declaration. We also use the global

declaration to declare functions. This global declaration is used based on

the requirement.

Line 4: int main()

Every C program must write this statement. This statement (main)

specifies the starting point of the C program execution. Here, main is a

user-defined method which tells the compiler that this is the starting

point of the program execution. Here, int is a data type of a value that is

going to return to the Operating System after completing the main

Notes

25

method execution. If we don't want to return any value, we can use it

as void.

Line 5: Open Brace ({)

The open brace indicates the beginning of the block which belongs to the

main method. In C program, every block begins with a '{' symbol.

Line 6: Local Declaration

In this section, we declare the variables and functions that are local to the

function or block in which they are declared. The variables which are

declared in this section are valid only within the function or block in

which they are declared.

Line 7: Executable statements

In this section, we write the statements which perform tasks like reading

data, displaying the result, calculations, etc., All the statements in this

section are written according to the requirements.

Line 9: Closing Brace (})

The close brace indicates the end of the block which belongs to the main

method. In C program every block ends with a '}' symbol.

Line 10, 11, 12, ...: User-defined function()

This is the place where we implement the user-defined functions. The

user-defined function implementation can also be performed before the

main method. In this case, the user-defined function need not be

declared. Directly it can be implemented, but it must be before the main

method. In a program, we can define as many user-defined functions as

we want. Every user-defined function needs a function call to execute its

statements.

2.2.1 General rules for any C program

1. Every executable statement must end with a semicolon symbol (;).

2. Every C program must contain exactly one main method (Starting

point of the program execution).

Notes

26

3. All the system-defined words (keywords) must be used in lowercase

letters.

4. Keywords can not be used as user-defined names(identifiers).

5. For every open brace ({), there must be respective closing brace (}).

6. Every variable must be declared before it is used.

2.3 C CHARACTER SET

As every language contains a set of characters used to construct words,

statements, etc., C language also has a set of characters which

include alphabets, digits, and special symbols. C language supports a

total of 256 characters.

Every C program contains statements. These statements are constructed

using words and these words are constructed using characters from C

character set. C language character set contains the following set of

characters...

1. Alphabets

2. Digits

3. Special Symbols

Alphabets

C language supports all the alphabets from the English language. Lower

and upper case letters together support 52 alphabets.

lower case letters - a to z

UPPER CASE LETTERS - A to Z

Digits

C language supports 10 digits which are used to construct numerical

values in C language.

Digits - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Special Symbols

C language supports a rich set of special symbols that include symbols to

perform mathematical operations, to check conditions, white spaces,

backspaces, and other special symbols.

Notes

27

Special Symbols - ~ @ # $ % ^ & * () _ - + = { } [] ; : ' " / ? . > , < \ |

tab newline space NULL bell backspace verticaltab etc.,

Every character in C language has its equivalent ASCII (American

Standard Code for Information Interchange value

Check your Progress-1

1. Define Multiple Lines Comments.

__

__

__

2. Explain special symbols used in C

__

__

__

2.4 C TOKENS

Notes

28

Every C program is a collection of instructions and every instruction is a

collection of some individual units. Every smallest individual unit of a c

program is called token. Every instruction in a C program is a collection

of tokens. Tokens are used to construct C programs and they are said to

the basic building blocks of a C program.

In a C program tokens may contain the following...

1. Keywords

2. Identifiers

3. Operators

4. Special Symbols

5. Constants

6. Strings

7. Data values

In a C program, a collection of all the keywords, identifiers, operators,

special symbols, constants, strings, and data values are called tokens

Consider the following C program...

In the above program there are 22 tokens.

2.5 C KEYWORDS

Notes

29

As every language has words to construct statements, C programming

also has words with a specific meaning which are used to construct c

program instructions. In the C programming language, keywords are

special words with predefined meaning. Keywords are also known as

reserved words in C programming language.

In the C programming language, there are 32 keywords. All the 32

keywords have their meaning which is already known to the compiler

Keywords are the reserved words with predefined meaning which

already known to the compiler Whenever C compiler come across a

keyword, automatically it understands its meaning.

2.5.1 Properties of Keywords

1. All the keywords in C programming language are defined as

lowercase letters so they must be used only in lowercase letters

2. Every keyword has a specific meaning, users can not change that

meaning.

3. Keywords cannot be used as user-defined names like variable,

functions, arrays, pointers, etc...

4. Every keyword in C programming language represents something or

specifies some kind of action to be performed by the compiler.

The following table specifies all the 32 keywords with their meaning...

Notes

30

Check your Progress-2

3. What is Token in C?

__

__

__

4. What do you understand by keywords?

__

__

__

2.6 C IDENTIFIERS

In C programming language, programmers can specify their name to a

variable, array, pointer, function, etc... An identifier is a collection of

characters which acts as the name of variable, function, array, pointer,

structure, etc... In other words, an identifier can be defined as the user-

defined name to identify an entity uniquely in the c programming

language that name may be of the variable name, function name, array

name, pointer name, structure name or a label.

The identifier is a user-defined name of an entity to identify it uniquely

during the program execution

Example

in marks; har student Name[30];

Here, marks and studentName are identifiers.

2.6.1 Rules for Creating Identifiers

1. An identifier can contain letters (UPPERCASE and

lowercase), numerics & underscore symbol only.

2. An identifier should not start with a numerical value. It can start with

a letter or an underscore.

Notes

31

3. We should not use any special symbols in between the identifier even

whitespace. However, the only underscore symbol is allowed.

4. Keywords should not be used as identifiers.

5. There is no limit for the length of an identifier. However, the

compiler considers the first 31 characters only.

6. An identifier must be unique in its scope.

2.6.2 Rules for Creating Identifiers for better

programming

The following are the commonly used rules for creating identifiers for

better programming...

1. The identifier must be meaningful to describe the entity.

2. Since starting with an underscore may create conflict with system

names, so we avoid starting an identifier with an underscore.

3. We start every identifier with a lowercase letter. If an identifier

contains more than one word then the first word starts with a

lowercase letter and second word onwards first letter is used as an

UPPERCASE letter. We can also use an underscore to separate

multiple words in an identifier.

2.7 C DATA TYPES

Data used in c program is classified into different types based on its

properties. In the C programming language, a data type can be defined as

a set of values with similar characteristics. All the values in a data type

have the same properties.

Data types in the c programming language are used to specify what kind

of value can be stored in a variable. The memory size and type of the

value of a variable are determined by the variable data type. In a c

program, each variable or constant or array must have a data type and

this data type specifies how much memory is to be allocated and what

type of values are to be stored in that variable or constant or array. The

formal definition of a data type is as follows...

The Data type is a set of value with predefined characteristics. data types

are used to declare variable, constants, arrays, pointers, and functions.

Notes

32

In the C programming language, data types are classified as follows...

2 Primary data types (Basic data types OR Predefined data types)

3 Derived data types (Secondary data types OR User-defined data

types)

4 Enumeration data types

5 Void data type

2.7.1 Primary data types

The primary data types in the C programming language are the basic data

types. All the primary data types are already defined in the system.

Primary data types are also called as Built-In data types. The following

are the primary data types in c programming language...

1. Integer data type

2. Floating Point data type

3. Double data type

4. Character data type

Notes

33

Integer Data type

The integer data type is a set of whole numbers. Every integer value does

not have the decimal value. We use the keyword "int" to represent

integer data type in C. We use the keyword int to declare the variables

and to specify the return type of a function. The integer data type is used

with different type modifiers like short, long, signed and unsigned. The

following table provides complete details about the integer data type.

Floating Point data types

Floating-point data types are a set of numbers with the decimal value.

Every floating-point value must contain the decimal value. The floating-

point data type has two variants...

 float

 double

We use the keyword "float" to represent floating-point data type and

"double" to represent double data type in c. Both float and double are

similar but they differ in the number of decimal places. The float value

contains 6 decimal places whereas double value contains 15 or 19

decimal places. The following table provides complete details about

floating-point data types.

Notes

34

Character data type

The character data type is a set of characters enclosed in single

quotations. The following table provides complete details about the

character data type.

The following table provides complete information about all the data

types in c programming language...

2.7.2 ENUMERATED DATA TYPE

An enumerated data type is a user-defined data type that consists of

integer constants and each integer constant is given a name. The keyword

"enum" is used to define the enumerated data type.

Notes

35

2.7.3 VOID DATA TYPE

The void data type means nothing or no value. Generally, the void is

used to specify a function which does not return any value. We also use

the void data type to specify empty parameters of a function.

2.7.4 DERIVED DATA TYPES

Derived data types are user-defined data types. The derived data types

are also called as user-defined data types or secondary data types. In the

c programming language, the derived data types are created using the

following concepts...

 Arrays

 Structures

 Unions

 Enumeration

2.7 LET US SUM UP

We understood the basic and essential elements that will be utilized

further to write a program in C language.

2.8 KEYWORDS

Guideline - a general rule, principle, or piece of advice.

Keyword- a word which acts as the key to a cipher or code.

Decimal Value - A representation of a real number using the base ten

and decimal notation, such as 201.4, 3.89

2.9 QUESTIONS FOR REVIEW

1. State General rules for any C program

2. What are Identifiers and explain the related rules for creating

identifiers.

Notes

36

 3.Explain the classification of data types in C.

2.10 SUGGESTED READINGS AND

REFERENCES

1. Fundamentals of Real Analysis, S K. Berberian, Springer.

2. Measure Theory and Integration, G. De Barra, New Age International

Publ.

3. Real Analysis, H. L. Royden.

4. Principles of Mathematical Analysis, W. Rudin.

5. Lectures on Real Analysis, J. Yeh, World Sci.

6. R. G. Bartle, The Elements of Integration, John Wiley & Sons, Inc.

New York, 1966

2.11 ANSWERS TO CHECK YOUR

PROGRESS

1. Provide definition- 2.2

2. Provide explanation –2.3

3.Provide definition – 2.4

4. Provide definition and few examples– 2.5

37

UNIT-3 ELEMENTS OF C -I

STRUCTURE

3.0 Objectives

3.1 Introduction

3.2 C Variables

 3.2.1 Declaration of variable

3.3 C Constants

 3.3.1 Integer Constant

 3.3.2 Floating point constants

3.3.3. Character constants

3.3.4 String Constant

3.3.5 Creating constants in c

3.4 C Storage Class

3.4.1 Auto storage class

3.4.2 Extern storage class

3.4.3 Static storage class

3.4.4 Register storage class

3.5 C Output Functions

3.5.1 printf()

3.5.2 putchar()

3.5.3 puts()

3.5.4 fprintf()

3.6 Let us sum up

3.7 Keywords

3.8 Questions for Review

Notes

38

3.9 Suggested Reading and References

3.10 Answers to Check your Progress

3.0 OBJECTIVES

Understand the different elements of C language

C Variable

C Constant

C Storage Class

C Output Function

3.1 INTRODUCTION

Before going in depth, we need to understand the basic elements of C

language. It is very necessary to know these elements because it helps

you to write C program.

3.2 C VARIABLES

Variables in a C programming language are the named memory locations

where the user can store different values of the same datatype during the

program execution. That means a variable is a name given to a memory

location in which we can store different values of the same data type. In

other words, a variable can be defined as a storage container to hold

values of the same datatype during the program execution. The formal

definition of a data type is as follows...

Variable is a name given to a memory location where we can store

different values of the same datatype during the program execution.

Every variable in C programming language must be declared in the

declaration section before it is used. Every variable must have a datatype

that determines the range and type of values be stored and the size of the

memory to be allocated.

Notes

39

A variable name may contain letters, digits and underscore symbol. The

following are the rules to specify a variable name...

1. Variable name should not start with a digit.

2. Keywords should not be used as variable names.

3. A variable name should not contain any special symbols except

underscore(_).

4. A variable name can be of any length but compiler considers only

the first 31 characters of the variable name.

3.2.1 DECLARATION OF VARIABLE

Declaration of a variable tells the compiler to allocate the required

amount of memory with the specified variable name and allows only

specified datatype values into that memory location. In C programming

language, the declaration can be performed either before the function as

global variables or inside any block or function. But it must be at the

beginning of block or function.

Declaration Syntax

Example

int number;

The above declaration tells to the compiler that allocates 2 bytes of

memory with the name number and allows only integer values into that

memory location.

3.3 C CONSTANTS

In C programming language, a constant is similar to the variable but the

constant hold only one value during the program execution. That means,

once a value is assigned to the constant, that value can't be changed

during the program execution. Once the value is assigned to the constant,

Notes

40

it is fixed throughout the program. A constant can be defined as

follows...

A constant is a named memory location which holds only one value

throughout the program execution.

In C programming language, a constant can be of any data type like

integer, floating-point, character, string and double, etc.,

3.3.1 INTEGER CONSTANTS

An integer constant can be a decimal integer or octal integer or

hexadecimal integer. A decimal integer value is specified as direct

integer value whereas octal integer value is prefixed with 'o' and

hexadecimal value is prefixed with 'OX'.

An integer constant can also be unsigned type of integer constant or long

type of integer constant. Unsigned integer constant value is suffixed with

'u' and long integer constant value is suffixed with 'l' whereas unsigned

long integer constant value is suffixed with 'ul'.

Example

125 -----> Decimal Integer Constant

O76 -----> Octal Integer Constant

OX3A -----> Hexa Decimal Integer Constant

50u -----> Unsigned Integer Constant

30l -----> Long Integer Constant

100ul -----> Unsigned Long Integer Constant

3.3.2 FLOATING POINT CONSTANTS

A floating-point constant must contain both integer and decimal parts.

Sometimes it may also contain the exponent part. When a floating-point

constant is represented in exponent form, the value must be suffixed with

'e' or 'E'.

Example

The floating-point value 3.14 is represented as 3E-14 in exponent form.

Notes

41

3.3.3 CHARACTER CONSTANTS

A character constant is a symbol enclosed in single quotation. A

character constant has a maximum length of one character.

Example

'A'

'2'

'+'

In the C programming language, there are some predefined character

constants called escape sequences. Every escape sequence has its own

special functionality and every escape sequence is prefixed with '\'

symbol. These escape sequences are used in output function called

'printf()'.

3.3.4 STRING CONSTANTS

A string constant is a collection of characters, digits, special symbols and

escape sequences that are enclosed in double quotations.

We define string constant in a single line as follows...

"This is btechsmartclass"

We can define string constant using multiple lines as follows...

" This\

is\

btechsmartclass "

We can also define string constant by separating it with white space as

follows...

"This" "is" "btechsmartclass"

All the above three defines the same string constant.

Notes

42

3.3.5 CREATING CONSTANTS IN C

In a C programming language, constants can be created using two

concepts...

1. Using the 'const' keyword

2. Using '#define' preprocessor

USING THE 'CONST' KEYWORD

We create a constant of any datatype using 'const' keyword. To create a

constant, we prefix the variable declaration with 'const' keyword.

The general syntax for creating constant using 'const' keyword is as

follows...

Example

const int x = 10 ;

Here, 'x' is a integer constant with fixed value 10.

Notes

43

The above program gives an error because we are trying to change the

constant variable value (x = 100).

USING '#DEFINE' PREPROCESSOR

We can also create constants using '#define' preprocessor directive.

When we create constant using this preprocessor directive it must be

defined at the beginning of the program (because all the preprocessor

directives must be written before the global declaration).

We use the following syntax to create constant using '#define'

preprocessor directive...

Example

#define PI 3.14

Here, PI is a constant with value 3.14

Check your Progress-1

1. State the rules to specify the variable name

__

__

__

Notes

44

2. Define constant with examples

__

__

__

3.4 C STORAGE CLASSES

In C programming language, storage classes are used to define things

like storage location (whether RAM or REGISTER), scope, lifetime

and the default value of a variable.

In the C programming language, the memory of variables is allocated

either in computer memory (RAM) or CPU Registers. The allocation of

memory depends on storage classes.

In C programming language, there are FOUR storage classes and they

are as follows...

1. Auto storage class

2. Extern storage class

3. Static storage class

4. Register storage class

3.4.1 Auto Storage Class

The default storage class of all local variables (variables declared inside

block or function) is auto storage class. Variable of auto storage class has

the following properties...

Notes

45

3.4.2 EXTERNAL STORAGE CLASS

The default storage class of all global variables (variables declared

outside function) is external storage class. Variable of external storage

class has the following properties...

Notes

46

3.4.3 STATIC STORAGE CLASS

The static storage class is used to create variables that hold value beyond

its scope until the end of the program. The static variable allows to

initialize only once and can be modified any number of times. Variable

of static storage class has the following properties...

Property Description

Keyword static

Storage Computer Memory

(RAM)

Notes

47

Default Value Zero

Scope Local to the block in

which the variable is

defined

Life time The value of the

persists between

different function calls

(i.e., Initialization is

done only once)

3.4.4 REGISTER STORAGE CLASS

The register storage class is used to specify the memory of the variable

that has to be allocated in CPU Registers. The memory of the register

variable is allocated in CPU Register but not in Computer memory

(RAM). The register variables enable faster accessibility compared to

other storage class variables. As the number of registers inside the CPU

Notes

48

is very less we can use very less number of register variables. Variable of

register storage class has the following properties...

Property Description

Keyword register

Storage CPU Register

Default

Value

Garbage Value

Scope Local to the block in which the variable is defined

Life time Till the control remains within the block in which

variable is defined

The following table provides detailed properties of all storage classes...

Storage

Class

Keywor

d

Memory

Location

Default

Value

Scope Life Time

Automati

c

auto Compute

r

Memory

(RAM)

Garbag

e Value

Local to

the block

in which

the

variable

Till the

control

remains

within the

block in

Notes

49

has defined which

variable is

defined

External extern Compute

r

Memory

(RAM)

Zero Global to

the

program

(i.e.,

Throughou

t the

program)

As long as

the

program‘s

execution

does not

come to end

Static static Compute

r

Memory

(RAM)

Zero Local to

the block

in which

the

variable

has defined

The value

of the

persists

between

different

function

calls (i.e.,

Initializatio

n is done

only once)

Register register CPU

Register

Garbag

e Value

Local to

the block

in which

the

variable

has defined

Till the

control

remains

within the

block in

which

variable is

defined

3.5 C OUTPUT FUNCTIONS

C programming language provides built-in functions to perform output

operation. The output operations are used to display data on user screen

(output screen) or printer or any file. The c programming language

provides the following built-in output functions...

Notes

50

1. printf()

2. putchar()

3. puts()

4. fprintf()

3.5.1 printf() function

The printf() function is used to print string or data values or a

combination of string and data values on the output screen (User screen).

The printf() function is built-in function defined in a header file called

"stdio.h". When we want to use printf() function in our program we need

to include the respective header file (stdio.h) using

the #include statement. The printf() function has the following syntax...

Syntax:

Output:

In the above example program, we used the printf() function to print a

string on to the output screen.

The printf() function is also used to display data values. When we want

to display data values we use format string of the data value to be

displayed.

Notes

51

Syntax:

Output:

In the above example program, we used the printf() function to print data

values of variables i and x on to the output screen. Here i is a an integer

variable so we have used format string %d and x is a float variable so we

have used format string %f.

The print() function can also be used to display string along with data

values.

Syntax:

Output:

Notes

52

In the above program, we are displaying string along with data values.

Every function in the C programming language must have a return value.

The printf() function also have an integer as a return value. The printf()

function returns an integer value equivalent to the total number of

characters it has printed.

Output:

In the above program, first printf() function printing "btechsmartclass"

which is of 15 characters. So it returns integer value 15 to the variable

"i". The value of "i" is printed in the second printf() function.

3.5.2 Formatted printf() function

Generally, when we write multiple printf() statements the result is

displayed in a single line because the printf() function displays the output

in a single line. Consider the following example program...

Output

Notes

53

In the above program, there are 3 printf() statements written in different

lines but the output is displayed in single line only.

To display the output in different lines or as we wish, we use some

special characters called escape sequences. Escape sequences are special

characters with special functionality used in printf() function to format

the output according to the user requirement. In the C programming

language, we have the following escape sequences...

Escape

sequence Meaning

\n Moves the cursor to New Line

\t Inserts Horizontal Tab (5 characters space)

\v Inserts Vertical Tab (5 lines space)

\a Beep sound

\b Backspace (removes the previous character from its

current position)

\\ Inserts Backward slash symbol

\? Inserts Question mark symbol

\' Inserts Single quotation mark symbol

\" Inserts Double quotation mark symbol

Consider the following example program...

Notes

54

3.5.3 putchar() function

The putchar() function is used to display a single character on the output

screen. The putchar() functions prints the character which is passed as a

parameter to it and returns the same character as a return value. This

function is used to print only a single character. To print multiple

characters we need to write multiple times or use a looping statement.

Consider the following example program...

Notes

55

3.5.4 puts() function

The puts() function is used to display a string on the output screen. The

puts() functions prints a string or sequence of characters till the newline.

Consider the following example program...

3.5.5 fprintf() function

The fprintf() function is used with the concept of files. The fprintf()

function is used to print a line into the file. When you want to use

fprintf() function the file must be opened in writting mode.

Check your Progress-2

3.What do you understand by External Storage Class?

__

__

__

4. What is formatted printf function?

Notes

56

__

__

__

3.6 LET US SUM UP

We came across various elements used in C language programming and

also understood clearly how to utilize these elements while writing a

program.

3.7 KEYWORDS

Memory location - A byte, word or other small unit of storage space in a

computer's main memory that is identified by its starting address (and

size)Keyword- a word which acts as the key to a cipher or code.

Initialize - set to the value or put in the condition appropriate to the start

of an operation.

Specify - state a fact or requirement clearly and precisely.

Escape sequences- are special characters with special functionality used

in printf() function to format the output according to the user requirement

3.8 QUESTIONS FOR REVIEW

1. Explain Declaration of variable

2. Discuss creating constants in C.

3. Explain auto storage class with properties and example

 4. Provide detailed properties of all storage classes

3.9 SUGGESTED READINGS AND

REFERENCES

1. Fundamentals of Real Analysis, S K. Berberian, Springer.

Notes

57

2. Measure Theory and Integration, G. De Barra, New Age International

Publ.

3. Real Analysis, H. L. Royden.

4. Principles of Mathematical Analysis, W. Rudin.

5. Lectures on Real Analysis, J. Yeh, World Sci.

6. R. G. Bartle, The Elements of Integration, John Wiley & Sons, Inc.

New York, 1966

3.10 ANSWERS TO CHECK YOUR

PROGRESS

1. Provide rules- 3.2

2. Provide definition & example –3.3

3.Provide definition – 2.4

4. Provide definition, syntax and example– 3.5.2

58

UNIT-4 ELEMENTS OF C -II

STRUCTURE

4.0 Objectives

4.1 Introduction

4.2 C Input Functions

4.2.1 scanf()

4.2.2 getchar()

4.2.3 getch()

4.2.4 gets()

4.2.5 fscanf()

4.3 C Operators

4.3.1 Arithmetic Operators

4.3.2 Relational Operators

4.3.3 Logical Operators

4.3.4 Increment & Decrement Operators

 4.3.5 Assignment Operators

 4.3.6 Bitwise Operators

 4.3.7 Conditional Operator

 4.3.8 Special Operators

4.4 Let us sum up

4.5 Keywords

4.6 Questions for Review

4.7 Suggested Reading and References

4.8 Answers to Check your Progress

4.0 OBJECTIVES

Understands the C Input Functions

Notes

59

Comprehend the different operators in C and their applications

4.1 INTRODUCTION

C programming language provides built-in functions to perform input

operations to read any given input and to display data on screen when

there is a need to output the result. C programming language supports a

rich set of operators.

4.2 C INPUT FUNCTIONS

The input operations are used to read user values (input) from the

keyboard. The C programming language provides the following built-in

input functions.

1 scanf()

2 getchar()

3 getch()

4 gets()

5 fscanf()

4.2.1 scanf() function

The scanf() function is used to read multiple data values of different data

types from the keyboard. The scanf() function is built-in function defined

in a header file called "stdio.h". When we want to use scanf() function in

our program, we need to include the respective header file (stdio.h)

using #include statement. The scanf() function has the following

syntax...

Notes

60

Output:

In the above example program, we used the scanf() function to read an

integer value from the keyboard and store it into variable 'i'.

The scanf function also used to read multiple data values of different or

the same data types. Consider the following example program...

Notes

61

Output:

In the above example program, we used the scanf() function to read one

integer value and one float value from the keyboard. Here 'i' is an integer

variable so we have used format string %d, and 'x' is a float variable so

we have used format string %f.

The scanf() function returns an integer value equal to the total number of

input values read using scanf function.

Output:

4.2.2 getchar() function

The getchar() function is used to read a character from the keyboard and

return it to the program. This function is used to read a single character.

To read multiple characters we need to write multiple times or use a

looping statement. Consider the following example program...

Notes

62

4.2.3 getch() function

The getch() function is similar to getchar function. The getch() function

is used to read a character from the keyboard and return it to the

program. This function is used to read a single character. To read

multiple characters we need to write multiple times or use a looping

statement. Consider the following example program...

Notes

63

4.2.4 gets() function

The gets() function is used to read a line of string and stores it into a

character array. The gets() function reads a line of string or sequence of

characters till a newline symbol enters. Consider the following example

program...

4.2.5 fscanf() function

The fscanf() function is used with the concept of files. The fscanf()

function is used to read data values from a file. When you want to use

fscanf() function the file must be opened in reading mode.

Check your Progress-1

1. What do you understand by getchar() function?

__

2. Define fscanf() function

Notes

64

__

__

__

4.3 C OPERATORS

An operator is a symbol used to perform arithmetic and logical

operations in a program. That means an operator is a special symbol that

tells the compiler to perform mathematical or logical operations. C

programming language supports a rich set of operators that are classified

as follows.

1 Arithmetic Operators

2 Relational Operators

3 Logical Operators

4 Increment & Decrement Operators

5 Assignment Operators

6 Bitwise Operators

7 Conditional Operator

8 Special Operators

4.3.1 ARITHMETIC OPERATORS (+, -, *, /, %)

The arithmetic operators are the symbols that are used to perform basic

mathematical operations like addition, subtraction, multiplication,

division and percentage modulo. The following table provides

information about arithmetic operators.

Operator Meaning Example

+ Addition 10 + 5 = 15

- Subtraction 10 - 5 = 5

* Multiplication 10 * 5 = 50

/ Division 10 / 5 = 2

% Remainder of the Division 5 % 2 = 1

Notes

65

⇒ The addition operator can be used with numerical data types and

character data type. When it is used with numerical values, it performs

mathematical addition and when it is used with character data type

values, it performs concatination (appending).

⇒ The remainder of the division operator is used with integer data type

only.

4.3.2 RELATIONAL OPERATORS (<, >, <=, >=,

==, !=)

The relational operators are the symbols that are used to compare two

values. That means the relational operators are used to check the

relationship between two values. Every relational operator has two

results TRUE or FALSE. In simple words, the relational operators are

used to define conditions in a program. The following table provides

information about relational operators.

Operator Meaning Example

< Returns TRUE if the first value is smaller

than second value otherwise returns

FALSE

10 < 5 is

FALSE

> Returns TRUE if the first value is larger

than second value otherwise returns

FALSE

10 > 5 is

TRUE

<= Returns TRUE if the first value is smaller

than or equal to second value otherwise

returns FALSE

10 <= 5 is

FALSE

>= Returns TRUE if the first value is larger

than or equal to second value otherwise

returns FALSE

10 >= 5 is

TRUE

== Returns TRUE if both values are equal

otherwise returns FALSE

10 == 5 is

FALSE

!= Returns TRUE if both values are not equal

otherwise returns FALSE

10 != 5 is

TRUE

Notes

66

4.3.3 LOGICAL OPERATORS (&&, ||, !)

The logical operators are the symbols that are used to combine multiple

conditions into one condition. The following table provides information

about logical operators.

Operator Meaning Example

&& Logical AND - Returns TRUE if all

conditions are TRUE otherwise

returns FALSE

10 < 5 && 12 >

10 is FALSE

|| Logical OR - Returns FALSE if all

conditions are FALSE otherwise

returns TRUE

10 < 5 || 12 > 10

is TRUE

! Logical NOT - Returns TRUE if

condition is FLASE and returns

FALSE if it is TRUE

!(10 < 5 && 12 >

10) is TRUE

⇒ Logical AND - Returns TRUE only if all conditions are TRUE, if any

of the conditions is FALSE then complete condition becomes FALSE.

⇒ Logical OR - Returns FALSE only if all conditions are FALSE, if any

of the conditions is TRUE then complete condition becomes TRUE.

4.3.4 INCREMENT & DECREMENT

OPERATORS (++ & --)

The increment and decrement operators are called unary operators

because both need only one operand. The increment operators adds one

to the existing value of the operand and the decrement operator subtracts

one from the existing value of the operand. The following table provides

information about increment and decrement operators.

Operator Meaning Example

++ Increment - Adds one to existing value int a = 5;

a++; ⇒ a = 6

-- Decrement - Subtracts one from existing

value

int a = 5;

a--; ⇒ a = 4

Notes

67

The increment and decrement operators are used infront of the operand

(++a) or after the operand (a++). If it is used infront of the operand, we

call it as pre-increment or pre-decrement and if it is used after the

operand, we call it as post-increment or post-decrement.

PRE-INCREMENT OR PRE-DECREMENT

In the case of pre-increment, the value of the variable is increased by one

before the expression evaluation. In the case of pre-decrement, the value

of the variable is decreased by one before the expression evaluation. That

means, when we use pre-increment or pre-decrement, first the value of

the variable is incremented or decremented by one, then the modified

value is used in the expression evaluation.

Output:

POST-INCREMENT OR POST-DECREMENT

In the case of post-increment, the value of the variable is increased by

one after the expression evaluation. In the case of post-decrement, the

value of the variable is decreased by one after the expression evaluation.

Notes

68

That means, when we use post-increment or post-decrement, first the

expression is evaluated with existing value, then the value of the variable

is incremented or decremented by one.

Output:

4.3.5 ASSIGNMENT OPERATORS (=, +=, -=, *=,

/=, %=)

The assignment operators are used to assign right-hand side value

(Rvalue) to the left-hand side variable (Lvalue). The assignment operator

is used in different variants along with arithmetic operators. The

following table describes all the assignment operators in the C

programming language.

Operator Meaning Example

= Assign the right-hand side value to left-

hand side variable

 A = 15

+= Add both left and right-hand side values

and store the result into left-hand side

variable

 A += 10

⇒ A = A+10

Notes

69

-= Subtract right-hand side value from left-

hand side variable value and store the

result

into left-hand side variable

 A -= B

⇒ A = A-B

*= Multiply right-hand side value with left-

hand side variable value and store the

result

into left-hand side variable

 A *= B

⇒ A = A*B

/= Divide left-hand side variable value with

right-hand side variable value and store

the result

into the left-hand side variable

 A /= B

⇒ A = A/B

%= Divide left-hand side variable value with

right-hand side variable value and store

the remainder

into the left-hand side variable

 A %= B

⇒ A = A%B

4.3.6 BITWISE OPERATORS (&, |, ^, ~, >>, <<)

The bitwise operators are used to perform bit-level operations in the c

programming language. When we use the bitwise operators, the

operations are performed based on the binary values. The following table

describes all the bitwise operators in the C programming language.

Let us consider two variables A and B as A = 25 (11001) and B = 20

(10100).

Operator Meaning Example

& the result of Bitwise AND is 1 if all the

bits are 1 otherwise it is 0

 A & B

⇒ 16 (10000)

| the result of Bitwise OR is 0 if all the

bits are 0 otherwise it is 1

 A | B

⇒ 29 (11101)

^ the result of Bitwise XOR is 0 if all the

bits are same otherwise it is 1

 A ^ B

⇒ 13 (01101)

~ the result of Bitwise once complement

is negation of the bit (Flipping)

 ~A

⇒ 6 (00110)

Notes

70

<< the Bitwise left shift operator shifts all

the bits to the left by the specified

number of positions

 A << 2

⇒ 100 (1100100)

>> the Bitwise right shift operator shifts all

the bits to the right by the specified

number of positions

 A >> 2

⇒ 6 (00110)

4.3.7 CONDITIONAL OPERATOR (?:)

The conditional operator is also called a ternary operator because it

requires three operands. This operator is used for decision making. In

this operator, first we verify a condition, then we perform one operation

out of the two operations based on the condition result. If the condition is

TRUE the first option is performed, if the condition is FALSE the second

option is performed. The conditional operator is used with the following

syntax.

Condition ? TRUE Part : FALSE Part;

Example

A = (10<15)?100:200; ⇒ A value is 100

Special Operators (sizeof, pointer, comma, dot, etc.)

The following are the special operators in C programming language.

4.3.8 SIZEOF OPERATOR

This operator is used to find the size of the memory (in bytes) allocated

for a variable. This operator is used with the following syntax.

sizeof (variableName);

Example

sizeof (A); ⇒ the result is 2 if A is an integer

Pointer operator (*)

Notes

71

This operator is used to define pointer variables in C programming

language.

Comma operator (,)

This operator is used to separate variables while they are declaring,

separate the expressions in function calls, etc.

Dot operator (.)

This operator is used to access members of structure or union.

Check your Progress-2

3. Explain Arithmetic Operators

__

__

__

4. State Increment and decrement operator with example

__

__

__

4.4LET US SUM UP

We came across various Input functions and operators in C language

programming and also understood clearly how to utilize these elements

while writing a program.

4.5 KEYWORDS

Conditional operator - The conditional operator is also called a ternary

operator because it requires three operands

Notes

72

Size of operator -This operator is used to find the size of the memory (in

bytes) allocated for a variable.

Dot Operator - This operator is used to access members of structure or

union.

4.6 QUESTIONS FOR REVIEW

1. Brief about input functions in C.

2. Explain Relational Operator

3. State different types of logical operators with meanings and examples.

4.7 SUGGESTED READINGS AND

REFERENCES

1. Fundamentals of Real Analysis, S K. Berberian, Springer.

2. Measure Theory and Integration, G. De Barra, New Age International

Publ.

3. Real Analysis, H. L. Royden.

4. Principles of Mathematical Analysis, W. Rudin.

5. Lectures on Real Analysis, J. Yeh, World Sci.

6. R. G. Bartle, The Elements of Integration, John Wiley & Sons, Inc.

New York, 1966

4.8ANSWERS TO CHECK YOUR

PROGRESS

1. Provide explanation, syntax and example- 4.2.2

2. Provide definition – 4.2.5

3.Provide explanation with example – 4.3.1

4. Provide table stating operator, meaning and example– 4.3.4

73

UNIT-5 EXPRESSION AND ‘IF’

STATEMENT IN C

STRUCTURE

5.0 Objectives

5.1 Introduction

5.2 C Expression

5.3 Expression Types in C

5.3.1 Infix Expression

5.3.2 Postfix Expression

5.3.3 Prefix Expression

5.4 C Operator Precedence and Associativity

5.5 C Expression Evaluation

5.6 Type Casting and Conversion In C

 5.6.1 Type Casting

 5.6.2 Type Conversion

5.7 ‗IF‘ Statement in C

5.7.1 Simple if statement

5.7.2 if-else statement

5.7.3 Nested if statement

5.7.4 if-else-if statement (if-else ladder)

5.8 Let us sum up

5.9 Keywords

5.10 Questions for Review

5.11 Suggested Reading and References

5.12 Answers to Check your Progress

Notes

74

5.0 OBJECTIVES

Understand the Expression and Expression Types in C

Understand the concept of C Operator Precedence and Associativity

Enumerate Type Casting and Conversion In C

Comprehend the application of ‗IF‘ statement in C

5.1 INTRODUCTION

In any programming language, if we want to perform any calculation or

to frame any condition etc., we use a set of symbols to perform the task.

These set of symbols makes an expression.

5.2 C EXPRESSIONS

What is an expression?

In the C programming language, an expression is defined as follows.

An expression is a collection of operators and operands that represents a

specific value. In the above definition, an operator is a symbol that

performs tasks like arithmetic operations, logical operations, and

conditional operations, etc.

Operands are the values on which the operators perform the task. Here

operand can be a direct value or variable or address of memory location.

5.3 EXPRESSION TYPES IN C

In the C programming language, expressions are divided into THREE

types. They are as follows...

1. Infix Expression

2. Postfix Expression

3. Prefix Expression

The above classification is based on the operator position in the

expression.

Notes

75

5.3.1 INFIX EXPRESSION

The expression in which the operator is used between operands is called

infix expression.

The infix expression has the following general structure.

5.3.2 Postfix Expression

The expression in which the operator is used after operands is called

postfix expression.

The postfix expression has the following general structure.

5.3.3 PREFIX EXPRESSION

The expression in which the operator is used before operands is called a

prefix expression.

The prefix expression has the following general structure.

Notes

76

Check your Progress-1

1. Define Expression In C

__

__

__

2. Explain postfix Expession

__

__

__

5.4 C OPERATOR PRECEDENCE AND

ASSOCIATIVITY

What is Operator Precedence?

Operator precedence is used to determine the order of operators

evaluated in an expression. In C programming language every operator

has precedence (priority). When there is more than one operator in an

expression the operator with higher precedence is evaluated first and the

operator with the least precedence is evaluated last.

What is Operator Associativity?

Operator associativity is used to determine the order of operators with

equal precedence evaluated in an expression. In the c programming

language, when an expression contains multiple operators with equal

precedence, we use associativity to determine the order of evaluation of

those operators.

In C programming language the operator precedence and associativity

are as shown in the following table.

Precedence Operator Operator Meaning Associativity

1 ()

[]

function call

array reference

Left to Right

Notes

77

->

.

structure member access

structure member access

2 !

~

+

-

++

--

&

*

sizeof

(type)

negation

1's complement

Unary plus

Unary minus

increment operator

decrement operator

address of operator

pointer

returns size of a variable

type conversion

Right to Left

3 *

/

%

multiplication

division

remainder

Left to Right

4 +

-

addition

subtraction

Left to Right

5 <<

>>

left shift

right shift

Left to Right

6 <

<=

>

>=

less than

less than or equal to

greater than

greater than or equal to

Left to Right

7 ==

!=

equal to

not equal to

Left to Right

8 & bitwise AND Left to Right

9 ^ bitwise EXCLUSIVE OR Left to Right

10 | bitwise OR Left to Right

11 && logical AND Left to Right

12 || logical OR Left to Right

13 ?: conditional operator Left to Right

14 =

*=

/=

%=

assignment

assign multiplication

assign division

assign remainder

Right to Left

Notes

78

+=

-=

&=

^=

|=

<<=

>>=

assign addition

assign subtraction

assign bitwise AND

assign bitwise XOR

assign bitwise OR

assign left shift

assign right shift

15 , separator Left to Right

In the above table, the operator precedence decreases from top to bottom

and increases from bottom to top.

5.5 C EXPRESSION EVALUATION

In the C programming language, an expression is evaluated based on the

operator precedence and associativity. When there are multiple operators

in an expression, they are evaluated according to their precedence and

associativity. The operator with higher precedence is evaluated first and

the operator with the least precedence is evaluated last.

An expression is evaluated based on the precedence and associativity of

the operators in that expression.

To understand expression evaluation in c, let us consider the following

simple example expression...

In the above expression, there are three operators +, * and /. Among

these three operators, both multiplication and division have the same

higher precedence and addition has lower precedence. So, according to

the operator precedence both multiplication and division are evaluated

first and then the addition is evaluated. As multiplication and division

have the same precedence they are evaluated based on the associativity.

Here, the associativity of multiplication and division is left to right. So,

Notes

79

multiplication is performed first, then division and finally addition. So,

the above expression is evaluated in the order of * / and +. It is evaluated

as follows...

4 * 3 ====> 12

12 / 2 ===> 6

10 + 6 ===> 16

The expression is evaluated to 16.

5.6 TYPE CASTING AND CONVERSION

IN C

In a programming language, the expression contains data values of the

same datatype or different data types. When the expression contains

similar datatype values then it is evaluated without any problem. But if

the expression contains two or more different datatype values then they

must be converted to the single datatype of destination datatype. Here,

the destination is the location where the final result of that expression is

stored. For example, the multiplication of an integer data value with the

float data value and storing the result into a float variable. In this case,

the integer value must be converted to float value so that the final result

is a float datatype value. In a C programming language, the data

conversion is performed in two different methods as follows...

1. Type Conversion

2. Type Casting

5.6.1 TYPE CONVERSION

The type conversion is the process of converting a data value from one

data type to another data type automatically by the compiler. Sometimes

type conversion is also called implicit type conversion. The implicit

type conversion is automatically performed by the compiler.

For example, in C programming language, when we assign an integer

value to a float variable the integer value automatically gets converted to

float value by adding decimal value 0. And when a float value is

assigned to an integer variable the float value automatically gets

Notes

80

converted to an integer value by removing the decimal value. To

understand more about type conversion observe the following...

int i = 10 ;

float x = 15.5 ;

char ch = 'A' ;

i = x ; =======> x value 15.5 is converted as 15 and assigned to

variable i

x = i ; =======> Here i value 10 is converted as 10.000000 and

assigned to variable x

i = ch ; =======> Here the ASCII value of A (65) is assigned to i

In the above program, we assign i = x, i.e., float variable value is

assigned to the integer variable. Here, the compiler automatically

converts the float value (90.99) into integer value (90) by removing the

decimal part of the float value (90.99) and then it is assigned to

variable i. Similarly, when we assign x = i, the integer value (90) gets

converted to float value (90.000000) by adding zero as the decimal part.

Notes

81

5.6.2 TYPECASTING

Typecasting is also called an explicit type conversion. Compiler

converts data from one data type to another data type implicitly. When

compiler converts implicitly, there may be a data loss. In such a case, we

convert the data from one data type to another data type using explicit

type conversion. To perform this we use the unary cast operator. To

convert data from one type to another type we specify the target data type

in parenthesis as a prefix to the data value that has to be converted. The

general syntax of typecasting is as follows.

Example

int totalMarks = 450, maxMarks = 600 ;

float average ;

average = (float) totalMarks / maxMarks * 100 ;

In the above example code, both totalMarks and maxMarks are integer

data values. When we perform totalMarks / maxMarks the result is a

float value, but the destination (average) datatype is a float. So we use

type casting to convert totalMarks and maxMarks into float data type.

Output:

Notes

82

Check your Progress-2

3. What is Operator Precedence

__

__

__

4. Discuss - an expression is evaluated based on the operator precedence

and associativity.

__

__

__

5.7 'IF' STATEMENT IN C

In the C programming language, the program execution flow is line by

line from top to bottom. That means the C program is executed line by

line from the main method. But this type of execution flow may not be

suitable for all the program solutions. Sometimes, we make some

decisions or we may skip the execution of one or more lines of code.

Consider a situation, where we write a program to check whether a

student has passed or failed in a particular subject. Here, we need to

check whether the marks are greater than the pass marks or not. If marks

are greater, then we decide that the student has passed otherwise failed.

To solve such kind of problems in C we use the statements called

decision making statements.

Decision-making statements are the statements that are used to verify a

given condition and decide whether a block of statements gets executed

or not based on the condition result.

In the C programming language, there are two decision-making

statements they are as follows.

1. if statement

2. switch statement

Notes

83

if statement in C

In c, if statement is used to make decisions based on a condition. The if

statement verifies the given condition and decides whether a block of

statements are executed or not based on the condition result. In c, if

statement is classified into four types as follows...

1. Simple if statement

2. if-else statement

3. Nested if statement

4. if-else-if statement (if-else ladder)

5.7.1 Simple if statement

Simple if statement is used to verify the given condition and executes the

block of statements based on the condition result. The simple if statement

evaluates specified condition. If it is TRUE, it executes the next

statement or block of statements. If the condition is FALSE, it skips the

execution of the next statement or block of statements. The general

syntax and execution flow of the simple if statement is as follows.

Simple if statement is used when we have only one option that is

executed or skipped based on a condition.

Notes

84

Output 1:

Output 2:

5.7.2 if-else statement

The if-else statement is used to verify the given condition and executes

only one out of the two blocks of statements based on the condition

result. The if-else statement evaluates the specified condition. If it is

TRUE, it executes a block of statements (True block). If the condition is

FALSE, it executes another block of statements (False block). The

general syntax and execution flow of the if-else statement is as follows.

The if-else statement is used when we have two options and only one

option has to be executed based on a condition result (TRUE or FALSE).

Notes

85

Output 1:

Output 2:

5.7.3 Nested if statement

Writing a if statement inside another if statement is called nested if

statement. The general syntax of the nested if statement is as follows...

Notes

86

The nested if statement can be defined using any combination of simple

if & if-else statements.

Output 1:

Output 2:

5.7.4 if-else-if statement (if-else ladder)

Writing a if statement inside else of an if statement is called if-else-if

statement. The general syntax of the if-else-if statement is as follows...

Notes

87

The if-else-if statement can be defined using any combination of simple

if & if-else statements.

Output:

MOST IMPORTANT POINTS TO BE REMEMBERED

Notes

88

When we use a conditional control statement like if statement, the

condition might be an expression evaluated to a numerical value, a

variable or a direct numerical value.

If the expression value or direct value is zero the condition becomes

FALSE otherwise becomes TRUE.

To understand more consider the following statements.

5.8 LET US SUM UP

If statements are decision making statements that helps to solve number

of problems. If statements provides more applicability to C programming

in real world problems

5.9 KEYWORDS

Task - a piece of work to be done or undertaken.

Evaluated - find a numerical expression or equivalent for (an equation,

formula, or function).

Type conversion- is the process of converting a data value from one data

type to another data type automatically by the compiler

5.10 QUESTIONS FOR REVIEW

1. Explain types of expression in C.

Notes

89

2. Explain Operator Precedence & Associativity with the help of

operators and examples.

3. How the data conversion takes place in C ?

4. Enumerate ‗If‘ statement in C.

5.11 SUGGESTED READINGS AND

REFERENCES

1. Fundamentals of Real Analysis, S K. Berberian, Springer.

2. Measure Theory and Integration, G. De Barra, New Age International

Publ.

3. Real Analysis, H. L. Royden.

4. Principles of Mathematical Analysis, W. Rudin.

5. Lectures on Real Analysis, J. Yeh, World Sci.

6. R. G. Bartle, The Elements of Integration, John Wiley & Sons, Inc.

New York, 1966

5.12 ANSWERS TO CHECK YOUR

PROGRESS

1. Provide explanation, syntax and example- 5.2

2. Provide explanation, syntax and example – 5.3.2

3.Provide explanation – 5.4

4. Provide explanation – 5.5

90

UNIT-6 DIFFERENT STATEMENT IN

C

STRUCTURE

6.0 Objectives

6.1 Introduction

6.2 'switch' statement in C

6.3 while Statement in C

6.4 'do-while' Statement in C

6.5 ‗for‘ Statement

6.6 break, continue and goto in C

6.6.1 break

6.6.2 continue

6.6.3 goto

6.7 Let us sum up

6.8 Keywords

6.9 Questions for Review

6.10 Suggested Reading and References

6.11 Answers to Check your Progress

6.0 OBJECTIVES

Understand the Switch, while and do- while statement in C

Understand the for, break, continue and goto in C

Notes

91

6.1 INTRODUCTION

C provides two styles of flow control:

 Branching

 Looping

Branching is deciding what actions to take and looping is deciding how

many times to take a certain action

6.2 'SWITCH' STATEMENT IN C

Consider a situation in which we have many options out of which we

need to select only one option that is to be executed. Such kind of

problems can be solved using nested if statement. But as the number of

options increases, the complexity of the program also gets increased.

This type of problem can be solved very easily using a switch statement.

Using the switch statement, one can select only one option from more

number of options very easily. In the switch statement, we provide a

value that is to be compared with a value associated with each option.

Whenever the given value matches the value associated with an option,

the execution starts from that option. In the switch statement, every

option is defined as a case.

The switch statement has the following syntax and execution flow

diagram.

The switch statement contains one or more cases and each case has a

value associated with it. At first switch statement compares the first case

value with the switchValue, if it gets matched the execution starts from

Notes

92

the first case. If it doesn't match the switch statement compares the

second case value with the switchValue and if it is matched the execution

starts from the second case. This process continues until it finds a match.

If no case value matches with the switchValue specified in the switch

statement, then a special case called default is executed.

When a case value matches with the switchValue, the execution starts

from that particular case. This execution flow continues with the next

case statements also. To avoid this, we use the "break" statement at the

end of each case. That means the break statement is used to terminate

the switch statement. However, it is optional.

Output 1:

Notes

93

Output 2:

MOST IMPORTANT POINTS TO BE REMEMBERED

When we use switch statement, we must follow the following...

 Both switch and case are keywords so they must be used only in

lower case letters.

 The data type of case value and the value specified in the switch

statement must be the same.

 switch and case values must be either integer or character but not

float or string.

 A switch statement can contain any number of cases.

 The keyword case and its value must be superated with a white

space.

 The case values need not be defined in sequence, they can be in

any order.

 The default case is optional and it can be defined anywhere

inside the switch statement.

 The switch value might be direct, a variable or an expression.

6.3 'WHILE' STATEMENT IN C

Consider a situation in which we execute a single statement or block of

statements repeatedly for the required number of times. Such kind of

problems can be solved using looping statements in C. For example,

assume a situation where we print a message 100 times. If we want to

Notes

94

perform that task without using looping statements, we have to either

write 100 printf statements or we have to write the same message 100

times in a single printf statement. Both are complex methods. The same

task can be performed very easily using looping statements.

The looping statements are used to execute a single statement or block of

statements repeatedly until the given condition is FALSE.

C language provides three looping statements...

 while statement

 do-while statement

 for statement

while Statement

The while statement is used to execute a single statement or block of

statements repeatedly as long as the given condition is TRUE. The while

statement is also known as Entry control looping statement. The while

statement has the following syntax...

Notes

95

At first, the given condition is evaluated. If the condition is TRUE, the

single statement or block of statements gets executed. Once the execution

gets completed the condition is evaluated again. If it is TRUE, again the

same statements get executed. The same process is repeated until the

condition is evaluated to FALSE. Whenever the condition is evaluated to

FALSE, the execution control moves out of the while block.

Output:

MOST IMPORTANT POINTS TO BE REMEMBERED

when we use a while statement, we must follow the following...

 while is a keyword so it must be used only in lower case letters.

 If the condition contains a variable, it must be assigned a value

before it is used.

 The value of the variable used in condition must be modified

according to the requirement inside the while block.

Notes

96

 In a while statement, the condition may be a direct integer value,

a variable or a condition.

 A while statement can be an empty statement.

Check your Progress-1

1.What are the important points need to be remembered while using

switch statement

__

__

__

2. Define looping statements in C

__

__

__

6.4 'DO-WHILE' STATEMENT IN C

The do-while statement is used to execute a single statement or block of

statements repeatedly as long as given the condition is TRUE. The do-

while statement is also known as the Exit control looping statement.

The do-while statement has the following syntax...

The do-while statement has the following execution flow diagram...

Notes

97

At first, the single statement or block of statements which are defined

in do block are executed. After the execution of the do block, the given

condition gets evaluated. If the condition is evaluated to TRUE, the

single statement or block of statements of do block are executed again.

Once the execution gets completed again the condition is evaluated. If it

is TRUE, again the same statements are executed. The same process is

repeated until the condition is evaluated to FALSE. Whenever the

condition is evaluated to FALSE, the execution control moves out of the

while block.

Output:

MOST IMPORTANT POINTS TO BE REMEMBERED

When we use the do-while statement, we must follow the following...

 Both do and while are keywords so they must be used only in

lower case letters.

 If the condition contains a variable, it must be assigned a value

before it is used.

 The value of the variable used in the condition must be modified

according to the requirement inside the do block.

Notes

98

 In a do-while statement, the condition may be a direct integer

value, a variable or a condition.

 A do-while statement can be an empty statement.

 In do-while, the block of statements is executed at least once.

6.5 'FOR' STATEMENT IN C

The for statement is used to execute a single statement or a block of

statements repeatedly as long as the given condition is TRUE. The for

statement has the following syntax and execution flow diagram...

At first, the for statement executes initialization followed

by condition evaluation. If the condition is evaluated to TRUE, the

single statement or block of statements of for statement are executed.

Once the execution gets completed, the modification statement is

executed and again the condition is evaluated. If it is TRUE, again the

same statements are executed. The same process is repeated until the

condition is evaluated to FALSE. Whenever the condition is evaluated to

FALSE, the execution control moves out of the for block.

Notes

99

Output:

MOST IMPORTANT POINTS TO BE REMEMBERED

When we use for statement, we must follow the following...

 for is a keyword so it must be used only in lower case letters.

 Every for statement must be provided with initialization,

condition, and modification (They can be empty but must be

separated with ";")

Ex: for (; ;) or for (; condition ; modification) or for (;

condition ;)

 In for statement, the condition may be a direct integer value, a

variable or a condition.

 The for statement can be an empty statement.

6.6 BREAK, CONTINUE AND GOTO IN C

In C, there are control statements that do not need any condition to

control the program execution flow. These control statements are called

Notes

100

as unconditional control statements. C programming language

provides the following unconditional control statements...

 break

 continue

 goto

The above three statements do not need any condition to control the

program execution flow.

6.6.1 Break statement

In C, the break statement is used to perform the following two things...

1. break statement is used to terminate the switch case

statement

2. break statement is also used to terminate looping statements

like while, do-while and for.

When a break statement is encountered inside the switch case statement,

the execution control moves out of the switch statement directly. For

example, consider the following program.

Notes

101

Output:

When the break statement is encountered inside the looping statement,

the execution control moves out of the looping statements.

The break statement execution is as shown in the following figure.

Notes

102

For example, consider the following example program...

Output:

6.6.2 Continue statement

The continue statement is used to move the program execution control to

the beginning of the looping statement. When the continue statement is

encountered in a looping statement, the execution control skips the rest

of the statements in the looping block and directly jumps to the

beginning of the loop. The continue statement can be used with looping

statements like while, do-while and for.

When we use continue statement with while and do-while statements

the execution control directly jumps to the condition. When we

use continue statement with for statement the execution control directly

jumps to the modification portion (increment/decrement/any

modification) of the for loop. The continue statement execution is as

shown in the following figure.

Notes

103

Output:

6.6.3 goto statement

The goto statement is used to jump from one line to another line in the

program. Using goto statement we can jump from top to bottom or

bottom to top. To jump from one line to another line, the goto statement

Notes

104

requires a label. Label is a name given to the instruction or line in the

program. When we use a goto statement in the program, the execution

control directly jumps to the line with the specified label.

Output:

MOST IMPORTANT POINTS TO BE REMEMBERED

When we use break, continue and goto statements, we must follow the

following...

 The break is a keyword so it must be used only in lower case

letters.

 The break statement can not be used with if statement.

 The break statement can be used only in switch case and looping

statements.

 The break statement can be used with if statement, only if that if

statement is written inside the switch case or looping statements.

 The continue is a keyword so it must be used only in lower case

letters.

 The continue statement is used only within looping statements.

 The continue statement can be used with if statement, only if

that if statement is written inside the looping statements.

 The goto is a keyword so it must be used only in lower case

letters.

Notes

105

 The goto statement must require a label.

 The goto statement can be used with any statement like if, switch,

while, do-while, and for, etc.

Check your Progress-2

3. Explain Exit control looping statement

__

__

__

2. Explain goto statement in C

__

__

__

6.7 LET US SUM UP

Branching statement helps to jump from one part of the program to

another, these statements help. The control transfer may be unconditional

or conditional. A loop statement allows us to execute a statement or

group of statements multiple times.

6.8 KEYWORDS

Compares - estimate, measure, or note the similarity or dissimilarity

between.

Execution - the carrying out of a plan, order, or course of action.

Modification - a change made.

6.9 QUESTIONS FOR REVIEW

1. Explain switch statement in C

Notes

106

2. Explain looping statement in C

3. Discuss execution using ‗for‘ statement

4. Brief about ‗break‘ in C

6.10 SUGGESTED READINGS AND

REFERENCES

1. Fundamentals of Real Analysis, S K. Berberian, Springer.

2. Measure Theory and Integration, G. De Barra, New Age International

Publ.

3. Real Analysis, H. L. Royden.

4. Principles of Mathematical Analysis, W. Rudin.

5. Lectures on Real Analysis, J. Yeh, World Sci.

6. R. G. Bartle, The Elements of Integration, John Wiley & Sons, Inc.

New York, 1966

6.11 ANSWERS TO CHECK YOUR

PROGRESS

1. Provide important point to remember- 6.2

2. Provide definition– 6.3

3.Provide explanation – 6.4

4. Provide explanation – 6.6.3

107

UNIT-7 DESIGNING STRUCTURED

PROGRAMS IN C

STRUCTURE

7.0 Objectives

7.1 Introduction

7.2 Functions in C

7.2.1 Function Declaration (Function Prototype)

7.2.2 Function Definition

7.2.3 Function Call

7.3 Types of Functions in C

 7.3.1 System Defined

 7.3.2 User Defined

7.4 Parameter Passing in C

 7.4.1 Call by Value

 7.4.2 Call by Reference

7.5 Let us sum up

7.6 Keywords

7.7Questions for Review

7.8 Suggested Reading and References

7.9 Answers to Check your Progress

7.0 OBJECTIVES

Understand the Functions and types of Functions in C

Enumerate the concept of Parameter Passing in C

Notes

108

7.1 INTRODUCTION

Structured programming is a programming technique in which a larger

program is divided into smaller subprograms to make it easy to

understand, easy to implement and makes the code reusable, etc.

Structured programming enables code reusability. Code reusability is a

method of writing code once and using it many times. Using a structured

programming technique, we write the code once and use it many times.

Structured programming also makes the program easy to understand,

improves the quality of the program, easy to implement and reduces

time.

In C, the structured programming can be designed

using functions concept. Using functions concept, we can divide the

larger program into smaller subprograms and these subprograms are

implemented individually. Every subprogram or function in C is

executed individually.

7.2 FUNCTIONS IN C

When we write a program to solve a larger problem, we divide that larger

problem into smaller subproblems and are solved individually to make

the program easier. In C, this concept is implemented using functions.

Functions are used to divide a larger program into smaller subprograms

such that the program becomes easy to understand and easy to

implement. A function is defined as follows...

Function is a subpart of a program used to perform a specific task

and is executed individually.

Every function in C has the following...

 Function Declaration (Function Prototype)

 Function Definition

 Function Call

Notes

109

7.2.1 FUNCTION DECLARATION

The function declaration tells the compiler about function name, the data

type of the return value and parameters. The function declaration is also

called a function prototype. The function declaration is performed before

the main function or inside the main function or any other function.

Function declaration syntax -

In the above syntax, returnType specifies the data type of the value

which is sent as a return value from the function definition.

The functionName is a user-defined name used to identify the function

uniquely in the program. The parametersList is the data values that are

sent to the function definition.

7.2.2FUNCTION DEFINITION

The function definition provides the actual code of that function. The

function definition is also known as the body of the function. The actual

task of the function is implemented in the function definition. That

means the actual instructions to be performed by a function are written in

function definition. The actual instructions of a function are written

inside the braces "{ }". The function definition is performed before the

main function or after the main function.

Function definition syntax -

7.2.3 FUNCTION CALL

Notes

110

The function call tells the compiler when to execute the function

definition. When a function call is executed, the execution control jumps

to the function definition where the actual code gets executed and returns

to the same functions call once the execution completes. The function

call is performed inside the main function or any other function or inside

the function itself.

Function call syntax -

ADVANTAGES OF FUNCTIONS

 Using funcions we can implement modular programming.

 Functions make the program more readable and understandable.

 Using functions the program implementation becomes easy.

 Once a function is created it can be used many times (code re-

usability).

 Using functions larger programs can be divided into smaller

modules.

7.3 TYPES OF FUNCTIONS IN C

In C Programming Language, based on providing the function definition,

functions are divided into two types. Those are as follows...

 System Defined Functions

 User Defined Functions

7.3.1 System Defined Functions

The C Programming Language provides pre-defined functions to make

programming easy. These pre-defined functions are known as syatem

defined functions. The system defined function is defined as follows...

The function whose definition is defined by the system is called as

system defined function.

Notes

111

The system defined functions are also called as Library

Functions or Standard Functions or Pre-Defined Functions. The

implementation of system defined functions is already defined by the

system.

In C, all the system defined functions are defined inside the header

files like stdio.h, conio.h, math.h, string.h etc.,

For example, the funtions printf() and scanf() are defined in the header

file called stdio.h.

Whenever we use system defined functions in the program, we must

include the respective header file using #include statement. For example,

if we use a system defined function sqrt() in the program, we must

include the header file called math.h because the function sqrt() is

defined in math.h.

Points to be Remembered

 System defined functions are declared in header files

 System defined functions are implemented in .dll files. (DLL

stands for Dynamic Link Library).

 To use system defined functions the respective header file must

be included.

7.3.2 USER DEFINED FUNCTIONS

In C programming language, users can also create their own functions.

The functions that are created by users are called as user defined

functions. The user defined function is defined as follows...

The function whose definition is defined by the user is called as user

defined function.

That means the function that is implemented by user is called as user

defined function. For example, the function main is implemented by user

so it is called as user defined function.

Notes

112

In C every user defined function must be declared and implemented.

Whenever we make function call the function definition gets executed.

For example, consider the following program in which we create a

function called addition with two paramenters and a return value.

In the above example program, the function declaration statement "int

addition(int,int)" tells the compiler that there is a function with

name addition which takes two integer values as parameters and returns

an integer value. The function call statement takes the execution control

to the additon() definition along with values of num1 and num2.

Then function definition executes the code written inside it and comes

back to the function call along with return value.

In the concept of functions, the function call is known as "Calling

Function" and the function definition is known as "Called Function"

When we make a function call, the execution control jumps from calling

function to called function. After executing the called function, the

execution control comes back to calling function from called function.

When the control jumps from calling function to called function it may

carry one or more data values called "Paramenters" and while coming

back it may carry a single value called "return value". That means the

Notes

113

data values transferred from calling function to called function are called

as Parameters and the data value transferred from called funcion to

calling function is called Return value.

Based on the data flow between the calling function and called function,

the functions are classified as follows...

 Function without Parameters and without Return value

 Function with Parameters and without Return value

 Function without Parameters and with Return value

 Function with Parameters and with Return value

Function without Parameters and without Return value

In this type of functions there is no data transfer between calling function

and called function. Simply the execution control jumps from calling-

function to called function and executes called function, and finally

comes back to the calling function. For example, consider the following

program...

Function with Parameters and without Return value

In this type of functions there is data transfer from calling-function to

called function (parameters) but there is no data transfer from called

function to calling-function (return value). The execution control jumps

from calling-function to called function along with the parameters and

Notes

114

executes called function, and finally comes back to the calling function.

For example, consider the following program...

Function without Parameters and with Return value

In this type of functions there is no data transfer from calling-function to

called-function (parameters) but there is data transfer from called

function to calling-function (return value). The execution control jumps

from calling-function to called function and executes called function, and

finally comes back to the calling function along with a return value. For

example, consider the following program...

Function with Parameters and with Return value

Notes

115

In this type of functions there is data transfer from calling-function to

called-function (parameters) and also from called function to calling-

function (return value). The execution control jumps from calling-

function to called function along with parameters and executes called

function, and finally comes back to the calling function along with a

return value. For example, consider the following program...

Points to be Remembered

 The parameters specified in calling function are said to be Actual

Parameters.

 The parameters declared in called function are said to be Formal

Parameters.

 The value of actual parameters is always copied into formal

parameters.

Check your Progress-1

1. Define Function and state its advantage

__

__

__

Notes

116

2. What is system defined function

__

__

__

3. Define parameters and return value

__

__

__

7.4 PARAMETER PASSING IN C

When a function gets executed in the program, the execution control is

transferred from calling-function to called function and executes function

definition, and finally comes back to the calling function. When the

execution control is transferred from calling-function to called-function it

may carry one or number of data values. These data values are called

as parameters.

Parameters are the data values that are passed from calling function

to called function.

In C, there are two types of parameters and they are as follows...

 Actual Parameters

 Formal Parameters

The actual parameters are the parameters that are specified in calling

function. The formal parameters are the parameters that are declared at

called function. When a function gets executed, the copy of actual

parameter values are copied into formal parameters.

In C Programming Language, there are two methods to pass parameters

from calling function to called function and they are as follows...

 Call by Value

 Call by Reference

7.4.1 CALL BY VALUE

Notes

117

In call by value parameter passing method, the copy of actual parameter

values are copied to formal parameters and these formal parameters are

used in called function. The changes made on the formal parameters does

not effect the values of actual parameters. That means, after the

execution control comes back to the calling function, the actual

parameter values remains same. For example consider the following

program...

Output:

In the above example program, the variables num1 and num2 are called

actual parameters and the variables a and b are called formal parameters.

The value of num1 is copied into a and the value of num2 is copied

into b. The changes made on variables a and b does not affect the values

of num1 and num2.

Notes

118

7.4.2 CALL BY REFERENCE

In Call by Reference parameter passing method, the memory location

address of the actual parameters is copied to formal parameters. This

address is used to access the memory locations of the actual parameters

in called function. In this method of parameter passing, the formal

parameters must be pointer variables.

That means in call by reference parameter passing method, the address of

the actual parameters is passed to the called function and is recieved by

the formal parameters (pointers). Whenever we use these formal

parameters in called function, they directly access the memory locations

of actual parameters. So the changes made on the formal parameters

effects the values of actual parameters. For example consider the

following program...

Output:

Notes

119

In the above example program, the addresses of

variables num1 and num2 are copied to pointer variables a and b. The

changes made on the pointer variables a and b in called function effects

the values of actual parameters num1 and num2 in calling function.

Check your Progress-2

4. Define Actual parameters.

__

__

5. What is ‗Call by Value‘?

__

__

__

7.5 LET US SUM UP

A structured programming technique, we write the code once and use it

many times. Structured programming also makes the program easy to

understand, improves the quality of the program, easy to implement and

reduces time.

7.6 KEYWORDS

Parameters - a numerical or other measurable factor forming one of a

set that defines a system or sets the conditions of its operation.

Defined - having a definite outline or specification; precisely marked or

stated.

Implemented - put (a decision, plan, agreement, etc.) into effect

Notes

120

7.7 QUESTIONS FOR REVIEW

1. Explain types of function in C

2. Explain user defined function in C

3. Describe the types of parameters

4. Explain ‗Call by reference‘.

7.8 SUGGESTED READINGS AND

REFERENCES

 B. Gottfried: Programming with C , Tata McGraw-Hill Edition 2002.

 E. Balagurusamy : Programming in ANSI C, Tata Mcgraw Hill -

Edition 2002.

 Brain W. Kernighan & Dennis M. Ritchie, The C Programme

Language, 2nd Edition (ANSI features) , Prentice Hall 1989.

 Let Us C- Y.P. Kanetkar, BPB Publication - 2002.

 Analysis of Numerical Methods—Isacsons& Keller.

 Numerical solutions of Ord. Diff. Equations—M K Jain

 Numerical solutions of Partial Diff. Equations—G D Smith.

 Programming with C, B. Gottfried, Tata-McGraw Hill

 Programming with C, K. R. Venugopal and Sudeep R. Prasad, Tata-

McGraw Hill

7.9 ANSWERS TO CHECK YOUR

PROGRESS

1. Provide explanation, syntax and advantage- 7.2

2. Provide definition– 7.3.1

3.Provide definition – 7.3.2

4. Provide definition – 7.4

5. Provide explanation – 7.4.1

